An improved neighborhood algorithm: parameter conditions and dynamic scaling
نویسنده
چکیده
The Neighborhood Algorithm (NA) is a popular direct search inversion technique. For dispersion curve inversion, physical conditions between parameters Vs and Vp (linked by Poisson’s ratio) may limit the parameter space with complex boundaries. Other conditions may come from prior information about the geological structure. Irregular limits are not natively handled by classical search algorithms. In this paper, we extend the NA formulation to such parameter spaces. For problems affected by non-uniqueness, the ideal solution is made of the ensemble of all models that equally fits the data and prior information. Hence, a powerful exploration tool is required. Exploiting the properties of the Voronoi cells, we show that a dynamic scaling of the parameters during the convergence to the solutions drastically improves the exploration.
منابع مشابه
An improved memetic algorithm to minimize earliness–tardiness on a single batch processing machine
In this research, a single batch processing machine scheduling problem with minimization of total earliness and tardiness as the objective function is investigated.We first formulate the problem as a mixed integer linear programming model. Since the research problem is shown to be NP-hard, an improved memetic algorithmis proposed to efficiently solve the problem. To further enhance the memetic ...
متن کاملOPTIMAL GROUND MOTION SCALING USING ENHANCED SWARM INTELLIGENCE FOR SIZING DESIGN OF STEEL FRAMES
Dynamic structural responses via time history analysis are highly dependent to characteristics of selected records as the seismic excitation. Ground motion scaling is a well-known solution to reduce such a dependency and increase reliability to the dynamic results. The present work, formulate a twofold problem for optimal spectral matching and performing consequent sizing optimization based on ...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کامل